Higher rank class groups
نویسندگان
چکیده
منابع مشابه
Higher Rank Class Groups by Luther Claborn and Robert Fossum
Let A be a noetherian ring which is locally Macaulay. For each integer i ^ O , groups d(A) and Wi(A) are denned, each sequence of groups generalizing to higher dimensions the usual class group of an integrally closed noetherian domain. d(A) is called the ith class group of A, and Wi(A) is called the ith homologuai class group of A. The main purpose of this note is to show that both sequences of...
متن کاملHigher rank Einstein solvmanifolds
In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.
متن کاملOn the rank of ideal class groups
We review some questions of Shafarevich on the structure of ideal class groups of number elds, and discuss results that provide evidence in support of these questions. The analogy between number elds and algebraic function elds of one variable has long been a fruitful source of inspiration for the development of algebraic number theory. Hilbert's pioneering work in class eld theory, for instanc...
متن کاملDimension and Rank for Mapping Class Groups
We study the large scale geometry of the mapping class group, MCG. Our main result is that for any asymptotic cone of MCG, the maximal dimension of locally compact subsets coincides with the maximal rank of free abelian subgroups of MCG. An application is a proof of Brock-Farb’s Rank Conjecture which asserts that MCG has quasi-flats of dimension N if and only if it has a rank N free abelian sub...
متن کاملRank-1 Phenomena for Mapping Class Groups
We prove that every element of the mapping class group g has linear growth (confirming a conjecture of N. Ivanov) and that g is not boundedly generated. We also provide restrictions on linear representations of g and its finite index subgroups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1967
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1967-11696-3